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Power Flow-Based Adaptive Generator Controls
Manuel Garcia, Scott Backhaus, and Russell Bent

Abstract—Electrical transmission grids rely on generator iner-
tia, frequency droop control, and automatic voltage regulation
(AVR) to maintain transient stability following power system
contingencies such as faults. Generator inertia and frequency
droop modify real power and primarily act in a “global” sense,
i.e. they respond to the global transient imbalance of generation
and load. Under high loading or extended fault durations, this
global response may be insufficient to maintain transient stability.
We propose additional automatic controls that create a local
real power response to a contingency. Specifically, for every
generator, we add an input to its turbine governor proportional
to the deviation of the power flows on the generator’s adjacent
transmission lines from a nominal steady state. Using dynamical
simulation of the post-contingency dynamics, we optimize over
the gains of these power flow feedbacks to improve the transient
stability of the network. The optimization step enables these
controls to be adaptive to changing power system conditions. We
demonstrate the effectiveness of this approach by incrementally
loading a test network while optimizing the power flow feedback
gains to delay the onset of transient instability for a given critical
clearing time applied to all contingencies.

Keywords—Contingency planning, frequency stability, voltage
stability, remedial action schemes, adaptive control, simulation-
based.

I. INTRODUCTION

Contingencies such as faults, line trips, and dropped genera-
tion/load excite dynamical responses in power systems. These
power systems rely on physics (generator inertia) and two
basic controls (speed droop and automatic voltage regulation)
to maintain stable transient dynamics [5]. A normally-cleared
fault provides an example of how these different effects
combine to promote stability. During the period while a fault
is applied (i.e. the “fault-on” period), the suppression of
generator terminal voltage reduces the ability of a generator to
deliver real power to the transmission network, however, the
generator’s mechanical input power remains nearly constant
over the short fault-on period. The power imbalance causes
the generator to accelerate to higher rotational speeds and
advance in phase relative to the rest of the power system.
For a generator with larger inertia, the acceleration and phase
advance are smaller, and the chance of the generator losing
synchrony with the rest of the power system is reduced.

At slower time scales, the increase in the rotational speed
causes the speed droop control to lower the mechanical power
input to the generator to counteract the acceleration [5]. Inertia
and speed droop are the two direct controls on generator speed.
Automatic voltage regulation (AVR) provides an indirect effect
on generator real power output by regulating a generator’s
terminal voltage to a reference voltage. In some circumstances,
a power system stabilizer (PSS) may also be employed to
modify a generator’s terminal voltage to further regulate its

real power output, however, the effect of the PSS is generally
focused on small signal stability, i.e. increasing the damping
of inter-area oscillations [5], and not on transient stability.

When a power system is stressed, the combination of inertia,
speed droop and AVR may not be sufficient to maintain tran-
sient stability for all disturbances. In these circumstances, the
power system becomes congested—the dispatch of generation
becomes constrained limiting access to inexpensive generation
and increasing the overall cost of electricity by forcing the
dispatch of more expensive resources. In these circumstances,
additional controls may be effective in restoring stability and
access to the least expensive generation. However, for high
reliability, any additional control acting on transient dynamics
should retain one very reliable aspect of speed droop and
AVR; the control should be distributed requiring only local
measurements without reliance on significant communications.

In this manuscript, we propose and investigate the use of
power flows on lines adjacent to a generator as an additional
input to the generator’s controls. Specifically, this new control
measures the deviation of power flows on transmission lines
adjacent to a generator from a nominal steady state, multiplies
these deviations by individual gains, and adds the results to
the frequency deviation term at the input to the generator’s
governor. We retain both speed droop and AVR and integrate
the new additional control with these existing controls. A
similar control structure was first proposed in [4], but was
only explored in the context of automatic generation control
(AGC), i.e. at time scales slower than transient dynamics where
the control objective is focused on restoration of the nominal
system frequency. Here, we extend the investigation of this
new control to transient stability.

The proposed control has several potentially advantageous
properties. First, the structure of the proposed control ensures
that local generators respond to the disturbance, e.g. for a
normally-cleared fault, the deviation of power line flows is
contained to the region around the fault, and the structure
of the control creates a local response to this disturbance.
Second, a fault at a specific bus will create a characteristic
pattern of line flows. By allowing independent gains for
power flow deviations on different lines, the response of a
generator can be tailored to different faults. Finally, the gains
are determined by an optimization procedure that also allows
the generator response to be adaptive—a property that will
become increasingly important as more intermittent generation
is introduced into power systems and power flows become
more variable. Specifically, a set of gains determined for
one pattern of power flows may actually degrade transient
stability for a different pattern of power flows that could be
reached by normal variability of intermittent generation. The
proposed optimization procedure allows for adaptation to these
variations.
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Our adaptive optimization procedure is described in detail
later in the manuscript. Here, we provide a brief overview.
Consider a set of credible contingencies C that potentially
impact secure power system operations. In this work, the set
C consists of cleared faults Ci, each with a maximum clearing
time t0,i. A stability screening tool is used to partition C
into a subset S that exhibits stable dynamics and a subset
U exhibits dynamics approaching instability. In this work, the
segregation into S and U is done using time simulation [6]
and a penalty function that approximates the proximity to
dynamical instability. However, any stability screening method
that provides a continuous measure of instability can be used.
Next, we use interior point [8] to find a set of power flow
deviation gains that lower the penalty function value for the
subset U ultimately moving them into subset S.

The controls proposed in this manuscript are related to
other fast acting wide-area and local-area controls that have
received recent attention. Work on wide-area control [2] has
focused on the design of sparse control structures that utilize
system-wide measurements, e.g. from phasor measurement
units (PMU). In this case, the desired control structure is
sparse to minimize the amount of communication required
to distribute the PMU measurements to the control points.
Closer to the work considered here, others have considered
distributed controllers to increase system damping designed
using centralized computation [3] or neural networks [1]. How-
ever, these studies only utilize local frequency measurements
and do not consider the power flow terms considered in this
manuscript. Adaptive control techniques have also been used to
implement Remedial Action Schemes (RAS). [9] presents an
Adaptive RAS that updates circuit breaker control plans under
specific severe contingencies using Lyapunov methods. Our
adaptive generator controls potentially reduces the number of
contingencies for which RAS’s are necessary (i.e. our control
reduces the number of severe contingencies necessary for the
Adaptive RAS to consider in [9]).

The rest of this manuscript is organized as follows. Section
II describes the test case, dynamic model, simulation methods
and our innovative distributed control structure. Section III
presents our stability screening tool, defines our stability metric
and describes the adaptive portion of our control structure by
formulating a “black box” optimization problem. Section IV
provides empirical results. Section V provides a conclusion
and future work.

II. POWER SYSTEM AND CONTROLS MODEL

A. Power System Dynamic Model
To explore the qualitative features of the proposed adaptive

power flow-based generator controls, this work utilizes the
small test power system model shown schematically in Fig. 1.
The model is an expansion of the IEEE 9-bus test case [7]
where one additional generator is connected to bus 8 via
two additional transmission lines. The transient synchronous
generator models in Fig. 1 are four fourth-order and use lead-
lag transfer functions to model the d and q-axis inductances
[6]. Generator voltage dynamics are described by a third-order
exciter model that is controlled using an Automatic Voltage

Fig. 1: A one-line diagram of the test case used in this work.
The test case is an expansion of the IEEE-9 bus test case and
includes four synchronous generators that are described using
fourth-order generator models, third-order exciter models, first-
order turbine governor models and constant impedance loads.
Standard AVR is used to control generator terminal voltage,
however, the generator governors are modified to include the
power flow inputs described in Sec. II-B in addition to the
usual speed droop.

Regulator (AVR) which includes simple proportional control
on the generator’s terminal voltage magnitude. The loads are
constant impedance. The details of the dynamic model used
are found in [6].

B. Turbine Governor Dynamics With Power Flow Inputs

Our new control measures the deviation in real power flows
on lines adjacent to each generator and modifies the normal
speed droop control signal by adding inputs to the generators’
governors. Incorporation of this control in the system model
modifies the governor state variables and requires some care.
Here, we provide some details of the implementation.

Figure 2 shows a block diagram of the IEEE Type 2 turbine
governor used in this work. The dynamics of this governor are
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Fig. 2: The block diagram structure of the standard IEEE Type
2 turbine governor used in this paper. Our modification to the
governor is though the input ∆P gmref described in Eq. 4.

described by

ẋtg =
−1

T2
(xtg + (1− T1/T2)∆P gmref ), (1)

where xtg is the state of the turbine governor, T1 is the
transient gain time constant, T2 is the governor time constant,
and ∆P gmref is the input to the governor. The output saturation
relates the mechanical power input P gm to each generator to
the dynamical variable P g∗m by

P gm = min(Pmax,max(Pmin, P g∗m )). (2)

Here, P g∗m is related to the governor’s state variable xtg by

P g∗m = xtg −
T1
T2

∆P gmref + P g0m . (3)

Normally, ∆P gmref is only the speed droop signal. Our new
control incorporates signals from real power flow deviations
on lines adjacent to each generator i, i.e.

∆P imref = γi(ωi(t)− ω0) + Σ
j∈Li

λji (Pj(t)− Pj(0)). (4)

The first term on the right hand side (RHS) is the normal
speed droop input where ωi(t) is the frequency at generator i
at time t, ω0 is the nominal system frequency, and γi is the
speed droop gain. Throughout this manuscript, we will take γi
=0.04. The second term on the RHS is the power flow-based
control where Pj(t) is the real power flowing on line j at time
t, Pj(0) is the nominal steady-state power flow on line j, Li is
the set of lines adjacent to generator i, and λji are power flow
control gains. We will denote the set of power flow gains at a
single generator as λi and the entire set of power flow gains
as λ. The set of gains λ are chosen through the optimization
method described in Sec. III-C.

C. Simulation Details
The power system dynamics are simulated using the Power

System Analysis Toolbox (PSAT) [6]. The initialization of
the state variables is modified to include the new controls
described above, and the integration is carried out using the
trapezoidal method. After a short simulation period to ensure
the system is in steady state, a contingency is applied. The
set of contingencies Ci = (bi, t0,i) is defined as three phase

faults at bus bi of duration t0,i. The fault-on period lasts
for time t0,i after which the fault is cleared and the time
simulation continues. The duration of the simulation depends
on the definition of the stability metric discussed in Sec. III-A

III. ADAPTIVE CONTROL OPTIMIZATION

The goal of introducing the power flow-based control in
Sec. II-B is to improve the transient stability of the post-
contingency dynamics. We propose to use optimization to
set the power flow deviation gains and to make this control
adaptive to changing system conditions. Below, we discuss a
penalty function that approximates the proximity to instability
for each contingency Ci, the aggregation of individual penal-
ties into a system penalty, and the optimization used to reduce
the system penalty below an empirically determined threshold.

A. Contingency-Specific Penalty
The dynamical simulations described above are used to

compute a metric that measures the proximity of the post-
fault dynamics to instability. The metric is computed for
contingency Ci, initial system state x0 and the power flow
control parameters λ. All other parameters are assumed to be
fixed. The metric M utilizes two key stability measures and is
defined as:

M(Ci, x
0, λ) =

1

T

∫ tf+T

tf

[
α Σ
i∈G

(
ωi(t)− ω̄(t)

ω0

)2

+

Σ
i∈N

(
Vi(t)− Vi(0)

Vi(0)

)2
]
a(t)dt (5)

The first term penalizes the dispersion of the frequencies at the
generators (i.e. at buses G) from the system average frequency
ω̄(t). The dispersion is defined relative to the average fre-
quency rather than ω0 to limit the interaction between the new
power flow-based control and the normal behavior of speed
droop control. The second term penalizes the dispersion of the
voltage magnitudes Vi(t) (at all system buses N ) from their
prefault values Vi(0).

The integral of these two terms is calculated over a specified
time horizon beginning at the moment the fault is cleared,
tf and ending at tf + T . In this work, we find that T =
5 seconds is sufficient for the purpose of approximating the
penalty function for optimization. α is an adjustable weight
between the frequency and voltage dispersion penalties. The
weighting function a(t) = 1 − e−t/τ emphasizes times later
in the post-contingency time horizon. In this work, we find
α = 1000 and τ = 5 seconds give satisfactory results, although
no systematic study of these parameters was performed.

Figure 3 displays the behavior of the stability metric and
its components for faults on bus 4 of different duration where
the only controls were the usual speed droop and AVR, i.e. no
additional power flow controls. For short fault durations, both
the frequency and voltage components (and the total stability
metric) are quite small. As the duration increases, the penalty
components and the total increase monotonically. Figures 4
and 5 display the results of simulations that were used to
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Fig. 3: Stability metric M versus fault duration for a fault
at bus 4 in Fig. 1. As the duration of the fault increases, M
increases smoothly and monotonically until a fault duration of
∼0.31 seconds where the post-fault dynamics display loss of
generator synchrony. Prior to this critical clearing time, M
provides a reliable measure of the proximity to instability.
Beyond this critical clearing time, the simulation results in
an erratic and non-monotonic M that cannot be used for the
optimization of the power flow gains λ.

compute the stability metric in Fig. 3 for fault durations 0.10
seconds and 0.3 seconds, respectively. The fault is applied at
t0 = 1 second. The results for the longer fault duration in
Fig. 5 show much larger differences in individual generator
frequencies which implies larger dynamical phase differences
and dynamics that are closer to loss of synchrony. This is also
reflected in the stability metric which is 0.0021 and 0.0106 in
Figs 4 and 5, respectively.

The stability metric M is well behaved until a duration
of approximately 0.31 seconds where the simulation shows
the post-fault dynamics result in loss of generator synchrony.
Below the transition, the metric M provides a measure of the
proximity to instability. Above the transition, the simulation
results yield a metric M that is no longer monotonic and is
no longer a reliable measure of the proximity to instability.
To avoid numerical issues associated with the behavior of M
beyond the critical clearing time, an upper bound M̄ is placed
on M . The resulting contingency-specific penalty P (Ci, x

0, λ)
is given by

P (Ci, x
0, λ) = min(M(Ci, x

0, λ), M̄). (6)

For the rest of the paper we will abuse notation by writing
P (Ci, x

0, λ) as Pi and M(Ci, x
0, λ) as Mi when context is

clear.
Using the results in Fig. 3 and similar results for other

contingencies as guidance, we set M̄=0.1 for the remainder
of this manuscript (also shown in Fig 3). However, we note
that the optimization procedure described below will seek to
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Fig. 4: Simulated transient response for a fault at bus 4 of
duration 0.10 seconds used to compute the stability metric M
in Fig. 3. The left plot shows the frequency ωi at each of the
four generators and the system average frequency. The right
hand plot shows the voltage at bus 1 and its value prior to the
fault.
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Fig. 5: Same as Fig. 4 but for a fault duration of 0.3 seconds.

avoid situations where Eq. 6 forces P = M̄ .

B. System-Wide Penalty
The goal of our new power flow controls is to create stable

dynamics for the entire set of contingencies C. Therefore,
the contingency-specific penalty defined above should be ag-
gregated into a system-wide penalty. In addition, the control
should maintain a quantifiable stability margin. To these ends,
we suggest the following system-wide penalty:

Psys = Σi∈Cmax(0, Pi − P̄i) (7)
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where P̄i is a threshold value for contingency i that is set below
the value of Pi where the system loses stability. Currently, we
determine this value empirically. A threshold value of 0.004
is chosen for a fault on bus 4 and is shown in Fig. 3. The
threshold for all faults range from 0.004 to 0.0114. Using a
threshold to maintain a stability margin has additional benefits
discussed below.

C. Adaptive Optimization
Using the penalty Psys from Eq. 7, we perform an opti-

mization over the set of gains λ for each generator governor
in the system. The optimization is solved using an interior
point gradient descent method that computes numerical gra-
dients [8] using the PSAT dynamical simulations as a “black
box” evaluator. Each iteration of the gradient descent requires
several evaluations of Psys, i.e. several dynamical simulations
to evaluate the individual Pi. However, the structure of Psys
provides several advantages.

Including non-zero thresholds P̄i in Psys allows the opti-
mization to terminate when it finds an set of control gains with
an acceptable stability margin without excessively iterating to
find a local minimum in the Pi. Additionally, by maintaining
a stability margin, each of the Pi is kept sufficiently far
from the transition to instability that the gradient in Psys
is well behaved. However, depending on how the algorithm
is initialized, a contingency k may have Pk = M̄k. In this
case, we temporarily decrease the fault duration time t0,k
until Pk < M̄k and run the optimization until Psys = 0. At
this point, Pk = P̄k. The fault duration t0,k is increased and
the process repeated until t0,k reaches its original value with
Pk < M̄k at which point the optimization procedure can be
executed normally.

The structure of Psys suggests another numerical simplifi-
cation which is not fully exploited in this manuscript but will
be leveraged in future work on larger power system models. If
a contingency Ci has Pi < P̄i, then it makes no contribution
to the overall system penalty Psys and does not need to be
evaluated by time consuming dynamical simulation during the
optimization. This observation suggests a cutting plane-like
approach where, after an initial evaluation to determine the
Pi, only the Ci with Pi > P̄i are retained in the optimization
procedure. Once the procedure finds a set λ such that Psys = 0,
a screening of all the Ci is again performed to check if the
control has caused any of the previously ignored Ci to now also
have Pi > P̄i. If additional Ci are found, they are included in
the set that contributes to Psys and the optimization procedure
is repeated until no new Ci are found.

Power system conditions will evolve over the operating
day because of the nominally repeatable changes in the mag-
nitude and configuration of load and because of the less
repeatable changes in intermittent generation such as wind
and photovoltaic generation. As the system changes, the set
of contingencies that result in unstable dynamics will also
evolve. We envision that the optimization procedure described
above would be executed periodically in an off-line fashion
to compute an updated set of feedback parameters that would
be distributed to the generators on the time scale of economic
dispatch signals.
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Fig. 6: Penalty for a fault at bus 8 versus the fault duration
different values of the gains λ. Starting with a fault duration
of 0.2, we the optimize the gains λ until the penalty is below
the threshold P̄ (horizontal line). Using these new gains, the
penalty versus fault duration curve is computed again (the λ.24
curve) showing that P̄ is exceeded at a fault duration of 0.24
seconds. This process is repeated multiple times resulting in
series of curves in the Figure.

IV. EMPIRICAL RESULTS

A. Preliminary Results–Single Fault

When considering the entire set of contingencies C, the
behavior of the power system and the optimization can be
quite complex. To demonstrate our approach and to build some
intuition about the results, we consider a simplified case where
we study a single fault on bus 8 in Fig. 1. Starting with λ = 0,
i.e. considering only speed droop and AVR, we scan over a
range of fault durations and map out the upper left curve in
Fig. 6. Much like Fig. 3, the penalty value P8 grows as the fault
duration increases until it exceeds the threshold (P̄8 =0.005)
at a duration of approximately 0.20 seconds. We continue
the penalty calculation beyond this duration for illustration
purposes only.

At a duration of 0.20 seconds and considering only the fault
on bus 8, we execute the optimization procedure looking for a
set of gains λ that result in P8 = P̄8 =0.005. The finite step of
the optimization actually results in P8 < P̄8. For illustration
purposes, we use the computed gains λ and once again scan
over a range of fault durations for bus 8 finding that P8 > P̄8

for a fault duration of 0.24 seconds (see the λ.24 curve in
Fig. 6). The optimization process is repeated to generate an
updated set of gains λ. Another scan over fault duration shows
these gains result in P8 > P̄8 at a duration of 0.28 seconds (see
the λ.28 curve). This process is repeated until a set of gains
λ are found that result in P8 < P̄8 out to a fault duration of
0.40 seconds. Beyond this duration, the optimization fails to
find a feasible solution.
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The example in Fig. 6 demonstrates the initialization proce-
dures described in Sec. III-C. By starting with a fault duration
time of 0.20 seconds, we are able to incrementally find sets of
gains λ that enable longer fault durations before the dynamics
become unstable. Starting from λ =0 in Fig. 6, it took three
iterations until the optimization could find a feasible solution
for a fault duration of 0.30 seconds. The results in Fig. 6
suggest another advantageous property of the control method
and optimization procedure we have proposed. The curves
generated by optimizing for a fault duration t0 fall entirely
below the penalty for a curves generated by optimizing for any
fault duration less than t0. If this observation were to hold for
all faults, optimizing for a fault duration of say 0.30 seconds
would always result in improved performance for shorter fault
durations.

B. Main Results–Uniform Load Growth
Next, we perform a system study that considers faults at

buses 4-9. In this case, we restrict the study to a uniform
fault clearing time applied to these buses, i.e. we would like
the post-fault dynamics for each bus to maintain a margin of
stability for a fault clearing time of 0.24 seconds. Instead of
varying the fault clearing time, we vary the load on the system
by uniformly scaling the load at all buses while also uniformly
increasing the injections at all generator buses. Any difference
in the system losses is taken up by the generator at the slack
bus, bus 1. This study emulates the evolution of a power system
through a day with load starting at relatively low levels and
slowly increasing toward its daily peak.

For the 11-bus test system in Fig. 1, we consider faults at
buses 4 through 9. In the rest of this discussion, we do not show
results for faults on buses 4-6 because the post-fault dynamics
for these buses are stable under all conditions considered in
this study. Figure 7a displays the penalties P7, P8, and P9

for load/generation scaling factors ranging from 0.5 to 1.35
when the generator controls are only speed droop and AVR.
These three faults result in unstable post-fault dynamics for
load scaling in the range 1.1-1.2 and with associated penal-
ties slightly above 0.010. To maintain a reasonable stability
margin, the penalty thresholds are set below the penalties
where the transitions occur, i.e. P̄7 = 0.0114, P̄8 = 0.0107,
P̄9 = 0.0091.

A close up view of the results for the faults on buses 7,
8, and 9 are shown in Figs. 7 b), c), and d), respectively.
The curves labeled λ0 in these Figures repeat the results
from Fig. 7a showing the penalties in relation to the penalty
thresholds (horizontal lines) for the individual buses as a
function of the load scaling for generators controlled only by
speed droop and AVR. Starting at a low load scaling (less than
0.9), all buses show acceptable post-fault dynamics on the λ0
curve, i.e. the stability margins are respected when only speed
droop and AVR are used. As the load increases along the λ0
curve to a load scaling of 1.0, the faults on buses 7 and 8 show
penalties that exceed their thresholds. At this system condition,
we carry out our optimization procedure and find a set of gains
λ1 that reduce P7 and P8 below their thresholds. Although P9

had not exceeded its threshold and did not factor directly into
the optimization, the gains λ1 also reduce P9.

Load on the power system continues to increase, but now
the system traverses the λ1 curves. At a load scaling of 1.1,
P7 and P8 once again hit their thresholds. Our optimization
is run once again resulting in gains λ2 that push P7 and P8

below their thresholds. P9 is once again reduced. The power
system now traverses the λ2 curve. Further increases in power
result in two more repetitions of this process finally resulting
in gains λ4. At this point, the use of feedback on power flow
deviations has allowed the load on the power system to be
increased by 20% over the load that would have originally
caused encroachment on the dynamical stability margins.

Finally, Figure 8b visualizes the behavior of the power flow
terms. Interestingly, in this case, the magnitude of the control
parameters monotonically change as the load increases. This is
a nice feature of the control and future work will investigate
the prevalence and potential theoretical justification for this
behavior.

V. CONCLUSION AND FUTURE WORK

Standard generator controls consisting of speed droop and
automatic voltage regulation (AVR) contribute to the stability
of power system dynamics following a contingency such as
a normally cleared fault. When a power system is stressed,
this set of controls may be insufficient to maintain transient
stability. We introduced a modification to these controls that
includes additional inputs to a generator’s governor derived
from measurements of the deviations of power flows on lines
adjacent to the generator from their nominal steady state
values. We introduced an optimization procedure that discovers
gains for these new governor inputs that reduce the post-
fault dispersion of generator frequency relative to the system
average frequency and the dispersion of the nodal voltages
from their pre-fault values. Using a small test model, we
find that this optimization procedure enhances the region of
transient stability, allowing the test system to be loaded beyond
a level that would result in unstable post-fault dynamics if the
only speed droop and AVR were employed.

There remain a number of interesting future directions for
this work. The power system model used in this work was
quite small and a fault applied at any bus in the model directly
affected every generator in the system. Larger models will
enable the exploration of localization of generator response
to specific faults. Larger systems will also test the ability of
this method to handle larger dynamical systems and exercise
optimization approaches such as cutting plane techniques to
handle a larger number of fault scenarios without severely
impacting the computational tractibility. We also plan to ex-
plore fast stability screening methods, like Lyapunov functions,
to identify the initial set of unstable contingencies. Finally,
additional classes of contingencies should be included beyond
normally-cleared faults.
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Fig. 7: Progression of the penalties for faults on buses 7, 8, and 9 as a function of the scaling of the system load in Fig. 1. a)
Variation of the penalties P7, P8, and P9 for generators controlled only by speed droop and AVR. b) Variation of the penalty P7

for different sets of power flow deviation gains λ found using the optimization procedure described in Sec. III-C. The numbered
curves index different runs of the optimization algorithm. The horizontal line is the penalty threshold P̄7. b) Same as a) except
for bus 8. c) Same as a) except for bus 9.

Generator Line 1 Line 2
1 4-5 4-6
2 7-5 7-8
3 9-6 9-8
4 10-8 10-8

(a) Generator-Parameter Mapping
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(b) Parameter Evolution

Fig. 8: a) A table mapping each generator in the system to their corresponding power flow measurements. b) The evolution of
the power flow deviation gains λ versus the load scaling. Parameters monotonically change as the load increases.
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